Ernie Secure

From Vita Development Wiki
Jump to navigation Jump to search

For security reasons, sensitive Ernie commands packets are encrypted with a per-session key. This key is generated and shared at second_loader stage through a handshake between cMeP and Ernie. SNVS (Secure NVS) is a part of NVS that is XTS encrypted and can only be accessed using Ernie secure command 0xD2. eMMC is also XTS encrypted and is accessed with the same command.

Ernie Secure Packets

Packets sent/received with Ernie command 0xD2 are AES-128-ECB encrypted with the Ernie communication session key (stored in Bigmac keyslot 0x511).

There is a 4 byte command field, 4 byte counter (from Bigmac keyslot 0x512) that increments per send, 6 bytes of zeros, optional data, and a 2 byte checksum. The checksum is the sum of all previous bytes and then negated.

// 30 02 00 0F (step 2, keyset 0xF)
typedef struct ernie_packet_handshake_step_2_data_plain { // size is 0x20
    char cmep_challenge[8]; // random from Bigmac PRNG
    char ernie_challenge[8]; // random from Ernie during step 1
    char step2_passphrase[0x10]; // hardcoded
} ernie_packet_handshake_step_2_data_plain;

// 30 04 00 0F (step 4, keyset 0xF)
typedef struct ernie_packet_handshake_step_4_data_plain { // size is 0x20
    char step4_5_passphrase[0x10]; // hardcoded
    char padding[0x10];
} ernie_packet_handshake_step_4_data_plain;

typedef struct ernie_secure_packet { // size is 0x28
    char unk_0; // 0x30 for commands 0xA0, 0xD0
    char step; // 0-5 for command 0xD0
    char unk_2; // usually 0, 0x20 (command 0xD2)
    char keyset; // 6 (SNVS), 0xB (command 0xA0), 0xE (SNVS), 0xF (command 0xD0)
    SceUInt32 unk_4; // zeroed or not
    char enc_data[0x20]; // AES128ECB with key = Bigmac keyslot 0x511, or with the corresponding Step Key for commands 0xA0 and 0xD0
} ernie_secure_packet;

Ernie Secure Commands

Command 0xA0

This command uses keyset 0xB and is only seen in second_loader. No data transfer is seen. The Ernie communication session key derived here is actually not used. The hypothesis is that this handshake serves as a checkpoint for Ernie to know that cMeP has successfully decrypted ConsoleId and OpenPsId since in between the handshake each decryption happens. The decryption does not use any data from this handshake.

Command 0xD0

This command establishes a handshake with keyset 0xF. It is used by updater_service_sm command 0xD0002 as well as second_loader.

After handshake:

  • Bigmac keyslot 0x511 is programmed with the Ernie communication session key.
  • Bigmac keyslot 0x512 is programmed with a 32 bit random number from Bigmac PRNG.

Command 0xD2

Command for SNVS read/write and maybe also eMMC read/write.

Boot dumps

First transaction (Mgmt Data read):

cMeP => Ernie: 00 00 20 00 47 D3 65 F4 00 00 00 00 00 00 6C FD

cMeP <= Ernie: 00 00 20 00 47 D3 65 F4 00 00 00 00 00 00 01 DD C7 AB 57 AD 28 9E 00 93 51 F8 D3 D2 29 2E 78 B6 8C 63 5A 26 7A A9 6B C8 E3 AC F3 3D 61 77 F0 EC

SNVS sector is decrypted using a bigmac keyslot in 0x502-0x504 and result (Mgmt Data) is written to Bigmac keyslot 0x50B (8 bytes).

Second transaction (Current firmware version read):

cMeP => Ernie: 20 00 20 00 48 D3 65 F4 00 00 00 00 00 00 4B FD

cMeP <= Ernie: 20 00 20 00 48 D3 65 F4 00 00 00 00 00 00 95 AD 79 D1 FE 5E 96 4B 3F 66 7D 47 04 28 05 E9 EB D1 26 86 E2 C1 9B 7B 53 B6 D3 11 76 8F 2D 3F 80 ED

Decrypted is a list of versions, two are read using some information from the MBR. On a default 3.60 retail system, the two offsets used are at 0x4 and 0x8. Those are both checked to be 0x03600000 on 3.60 (hard coded). If they are 0xDEADBEEF, the check is skipped. Additionally, in the decrypted buffer from the previous command (written to Bigmac keysslot 0x50B), if bit 1 at byte offset 0x4 is set, then the version check is skipped. Then, if boot is not resume the version from kernel_boot_loader.self is also checked. Finally slot 0x50E and 0x518 are written with these two version codes.

Ernie Secure Handshake

This handshake is used totally or partially by Ernie secure commands 0xA0 and 0xD0.

Step 0: cMeP challenges Ernie

  1. cMeP generates an empty buffer 30 00 00 0F 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 and sends it to Ernie.

Step 1: Ernie returns Ernie Challenge

  1. Ernie returns header 30 01 00 0F 00 00 00 00 + 8 byte Ernie Challenge.

Step 2: cMeP sends cMeP Challenge

  1. cMeP composes a data buffer that is 8 bytes of RNG value, 8 byte Ernie Challenge from step 1, and 16 bytes of Step 2 Passphrase.
  2. cMeP encrypts this data using AES-128-ECB and Step 2 Key.
  3. cMeP appends the header 30 02 00 0F 01 00 00 00 and sends to Ernie.

Step 3: Ernie confirms it has received cMeP Challenge

  1. Ernie returns header 30 03 00 0F 00 00 00 00 and a 0x20 byte encrypted buffer.
  2. cMeP decrypts it with AES-128-ECB and Step 3 Key.
  3. cMeP checks that first 8 byte matches the Ernie Challenge from step 2 and next 8 byte matches the cMeP Challenge generated in step 2. The remaining 16 bytes are zero.

Step 3 bis: cMeP registers the Ernie Communication Session Key

  1. The following operations are only done with Ernie command 0xD0 as it is the only one that registers the Ernie communication session key, once for all.
  2. cMeP AES-128-ECB encrypts the same 16 byte challenge buffer using Ernie Communication Session Key Master Key.
  3. This is the Ernie Communication Session Key. cMeP registers it into Bigmac keyslot 0x511.

Step 4: cMeP tells Ernie to register the Ernie Communication Session Key

  1. Using the Ernie communication session key, cMeP encrypts a known value, Step 4-5 Passphrase.
  2. cMeP appends the header 30 04 00 0F 00 00 00 00 and sends to Ernie.
  3. Ernie decrypts the received data and checks that the passphrase is valid.
  4. Ernie generates the Ernie Communication Session Key the same way as cMeP and registers it in its memory.

Step 5: cMeP receives Ernie encrypted packet for Ernie Communication Session Key verification

  1. cMeP gets a response back from Ernie (header 30 05 00 0F 00 00 00 00), decrypts the encrypted data with the Ernie communication session key, and checks that it matches the Step 4-5 Passphrase.

SNVS

Ernie provides raw storage in its Data Flash memory, named NVS (Non-Volatile Storage) by SCE. The PS Vita OS partitions some of this storage for encrypted data. The keys to encrypt/decrypt these data are from cMeP keyslots 0x502-0x504. They are derived by second_loader by encrypting using AES-256-CBC a seed with cMeP keyslot 0x216, which is console unique. Consoles with minimum firmware < 0.996 use a set of static keys found in second_loader. Minimum firmware comes from IdStorage SMI leaf.

Offset Size Name Comment Used by
0 0x20 Mgmt Data Embeds SNVS flags and ProductMode. Used for Update, PM and QAF. XTS encrypted sector. 0x10 data + 0x10 CMAC "sceSblQafManagerSetFlag" (sub_81001610 on FW 0.990), "SpkgInfoUtilGetSNVSFlagStatus" and "SpkgInfoUtilSetSNVSFlagStatus" (on FW 0.931), setProductMode
0xE0 0x1C0 SNVS Sectors 19 XTS encrypted sectors of size 0x20 bytes handled by update_service_sm.self "SpkgInfoUtilInitForUpdater" on FW 0.931
0x2A0 0x20 Qa Flag Version 0x10 bytes data + 0x10 bytes AES128CMAC. If unused, 0xFFed. "sceSblQafManagerSetQaFlagVersion" on FW 0.940
0x2C0 0x140 Unknown 0xFFed

XTS encrypted sectors

Offset Size Name Comment Used by
0 0x20 Mgmt Data Embeds SNVS flags and ProductMode. Used for Update, PM and QAF. 0x10 data + 0x10 CMAC "sceSblQafManagerSetFlag" (sub_81001610 on FW 0.990), "SpkgInfoUtilGetSNVSFlagStatus" and "SpkgInfoUtilSetSNVSFlagStatus" (on FW 0.931), setProductMode
0x20 0x20 SNVS Sectors System Software version info.
0x40 0x20 SNVS Sectors Processor version info. Current System Software version, Syscon version, unknown processor, factory System Software version.
0x60 0x20 SNVS Sectors Some flags.
0xA0 0x20 SNVS Sectors Active SLB2 sha256.
0xC0 0x20 SNVS Sectors Inactive SLB2 sha256.
0xE0 0x60 SNVS Sectors Unknown sectors
0x140 0x20 SNVS Sectors Battery HW info, Battery FW info.
0x160 0x140 SNVS Sectors Unknown sectors

Firmware

See Ernie Firmware