F00D Processor

From Vita Development Wiki
Revision as of 02:04, 27 June 2016 by Proxima (talk | contribs) (→‎Protocol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This processor is hypothesized to perform most of the cryptography tasks including storing and handing of keys. There is little information about it though. The F00D Processor (named after the e_machine field of the ELF headers) is likely a custom Toshiba MeP core.


Communication seems to go through some sort of FIFO register.


To write, put the double word into 0xE0000010. Next read 0xE0000010 until it returns 0, which indicates the data was read by the F00D processor.


To read, get a double word from 0xE0000000. If it returns 0, no data is available. Otherwise, acknowledge that the data has been read by putting the same data into 0xE0000000.


A 32-bit command buffer is defined below. The command is sent to the F00D processor with the method listed above.

Bit End Bit Start Name Description
31 23 ? ?
22 22 ? ?
21 21 ? ?
20 18 flag? ?
17 13 ? Always 0
12 8 ID Command ID
7 1 ? Always 0
0 0 Valid Set 1 to indicate command is valid

Command ID

Below are notes on different commands.


Seems to be used to set the 0x100 sized shared buffer. First the physical address of the buffer is written to 0xE0000010 and then command 0x0 is written.


May be used to reset F00D processor.


Seems to be used to set a 0x80 sized shared buffer.


Seems to set the SCE encrypted revocation list.


kprx_auth_sm.self is allowed access to 0x1F000000, 0x1F840000, 0x20000000, and 0x40300000. The address checks is likely done in software. F00D has it's own private 128KB memory from 0x00800000 to 0x00820000. F00D SELFs are typically loaded to 0x0080B000.